
G.O.L.F. on IBM i

David Andruchuk

Sr. Architect

Computer Systems Design Associates, Inc.

What can i do…..i can do Database

Get Off Laggard Files on IBM i

What are we covering today?

Program vs Data Design

Å Program Centric

Å Data Centric

IBMôs Modernization roadmap

Why Surrogates can help our Cause

Before and after coding of ñourò CUSTMAST table

Å DDS to DDL

Å Primary Key and Row Change Timestamp inclusion

Å Surrogate coding to eliminate recompiles

Discuss the benefits of reengineering your database

Change is hardéé

Get Off Laggard Files on IBM i

laggard

1. Lagging behind; taking more time than the others in a group.

2. (animal husbandry) Not growing as quickly as the rest of the flock or herd.

Get Off Laggard Files on IBM i

There are three ways to
convert people to a

cause…

By threat of force
By intellectual argument

By inspiration

Get Off Laggard Files on IBM i

Program vs Data Design

Decisions to make are:
Å Should you convert your DDS based tables to DDL based tables

Å Should you convert your RLA to embedded SQL

Long term goal is to separate programs and data
Å For Flexibility

Å For Performance

Program Centric = Program does everything
Å Files are tied to program by F specs

Å RLA not designed to consume mass quantities of data

Å Each RLA I/O could be up to three disk I/O operations

Å CHAIN, READE, etc.. are IBM i only proprietary skills

Data Centric = Program ñrequestsò data from the DBMS
Å Tables can be changed without program recompiles

Å SQL based access scales as your size of data grows

Å PF = 8K page size, SQL table = 64K page size

Å IBM only enhancing SQL technology in recent and future releases

Get Off Laggard Files on IBM i

Program vs Data Design

Most IBM i Shops Most HLL / OO Shops

ÅTraditional I/O based

ÅSlows Down as # of rows increase

ÅLess Efficient

ÅLess Flexible

ÅPrograms Determine Access Method of Data

ÅSingle Layer Architecture

ÅRow Based Data Access

ÅSQL Based

ÅSpeeds up as # of rows increase

ÅVery Efficient

ÅVery Flexible to Changing Business

ÅDataBase Determines Access Method

of Data

ÅMulti Layer Architecture

ÅSet Based Data Access

Program Centric Data Centric

Get Off Laggard Files on IBM i

Program Centric Design

ÅProgram Understands Relationships DBMS Does Not

ÅProgrammer must account for Data Integrity

ÅProgrammer Determines what Keyed Access Path to chain to

ÅTo see what Items Customer has ordered, program must do 4 chains (12 disk I/Os)

ÅAny Change to PF requires recompile of all programs to prevent Level Checks

ÅAny change to data that is used for chaining requires a change to a key field

Get Off Laggard Files on IBM i

Program Centric Design

Get Off Laggard Files on IBM i

Data Centric Design

ÅDBMS understand relationship. Program does not care.

ÅDBMS accounts for Data Integrity

ÅDMBS determines how data is accessed. (i.e. what access path)

ÅTo see what Items Customer has ordered, use CUSTOMER_ITEMS view.

(1 logical I/O vs 6 physical I/Os)

ÅAny Change to PF has no effect on program(s)

ÅKeys are identity keys. They never change. Change can be done to all data w/o issues.

Get Off Laggard Files on IBM i

Data Centric Design

Get Off Laggard Files on IBM i

IBM’s Modernization roadmap

Get Off Laggard Files on IBM i

IBM’s Modernization roadmap

Get Off Laggard Files on IBM i

IBM’s Modernization roadmap

Get Off Laggard Files on IBM i

IBM’s Modernization roadmap

Get Off Laggard Files on IBM i

Why Surrogates can help our Cause

surrogate

1. A substitute (usually of a person, position or role).

2. A person or animal that acts as a substitute for the social or pastoral role of another, such as

a surrogate mother.

cause

1. The source of, or reason for, and event or action; that which produces or effects a result.

2. A goal, aim or principle, especially one which transcends purely selfish ends.

Our cause is how to convert our DDS based database to SQL DDL based and implement

those changes without having to recompile all of our programs and not break it all!!

Using the IBM suggested surrogate roadmap will help us get our DDS to DDL. Then we

can begin to modify our unique keys, primary keys, constraints, column data types,

normalized database structures, etcé

Get Off Laggard Files on IBM i

Before and after coding of “our” CUSTMAST table

How we can go from this CUSTMAST PF file To this CUSTMASTSQL SQL table

Get Off Laggard Files on IBM i

Before and after coding of “our” CUSTMAST table

Our existing CUSTMAST PF

Our existing CUSTMASTL1 LF

Our existing CUSTMASTL2 LF

Get Off Laggard Files on IBM i

Before and after coding of “our” CUSTMAST table

Our existing CUSTMAST PF design from SYSCOLUMNS

Get Off Laggard Files on IBM i

Before and after coding of “our” CUSTMAST table

Our desired CUSTMASTSQL table and column long names

Get Off Laggard Files on IBM i

Before and after coding of “our” CUSTMAST table

Our new CUSTMASTSQ DDL

Get Off Laggard Files on IBM i

Before and after coding of “our” CUSTMAST table

Our new CUSTMASTSQ DDL

Get Off Laggard Files on IBM i

Before and after coding of “our” CUSTMAST table

Our new CUSTMASTSQ DDL

Get Off Laggard Files on IBM i

Before and after coding of “our” CUSTMAST table

Our new CUSTMASTSQ Indexes

Get Off Laggard Files on IBM i

Before and after coding of “our” CUSTMAST table

Our original CUSTMAST PF converted to the surrogate LF

Get Off Laggard Files on IBM i

Before and after coding of “our” CUSTMAST table

Our new CUSTMASTSQL LFs

Get Off Laggard Files on IBM i

Before and after coding of “our” CUSTMAST table

Our new CUSTMAST View

Get Off Laggard Files on IBM i

Before and after coding of “our” CUSTMAST table

What we didé..

1. Create new SQL table from old PF to new DDL

2. Added primary key and row change timestamp columns

3. Added Long Column and Table Names so we can refer to a ñnameò by more than 10 long

4. Created an SQL Index for our original PF and each related LF

5. Change the original PF to an LF and pointed the PFILE to our new SQL table

6. Change our related LFs to point to the new SQL table

7. Change our related LFs to add the keyword FORMAT to point to the new CUSTMAST LF

8. Create new View over SQL table that is based on original columns in table

Compilation sequenceé..

1. SQL Table

2. SQL View(s)

3. SQL Index(es)

4. LF that is the surrogate (Old PF changed to be LF)

5. LF(s) that are not the surrogate

Get Off Laggard Files on IBM i

Before and after coding of “our” CUSTMAST table

What we gainedé..

1. Since the keys of our LFs are the same as our new Indexes we gained Index

Support, meaning, the access paths are shared allowing the system to work less

2. Index access paths are easier to maintain than LF access paths

3. Our LFs now use the 64K page size vs 8K as the LFs are built AFTER the

Indexes and share the new access path size

4. New IDENTITY column as our PK which does not affect the Format Level ID

5. Row Change Timestamp

What we loseé..

1. This does not work for multimember files

2. This does not work on JOIN LFs (change them to point to the new SQL table to

gain the new access paths)

Get Off Laggard Files on IBM i

Discuss the benefits of reengineering our Database

Å We gained Flexibility to adapt to our always change business needs

Å We gained Performance to be able to scale our data

Å We have positioned ourselves to be able to begin to separate our programs from our data

Å We gained capability to change our tables without having to recompile our programs

Å We can begin to drive more work down to our DBMS

Å We can begin to move our Business Rules to our database

Å We can add rules (Constraints, Foreign Keys, etcé)

Å We can take advantage of SQL only capabilities

Get Off Laggard Files on IBM i

Change is hard...

https://www.youtube.com/watch?v=pQHX-SjgQvQ

THiNK

An exploration into making the world work better

